Transition metal complexes of Co(II), Ni(II), Cu(II), and Zn(II) with 2-(4-antipyrine azo)-4-nitroaniline derived from 4-aminoantipyrine and 4-nitroaniline were synthesized. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR, UV-Vis and 1HNMR, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). High molar absorbtivity of the complex solutions were observed. From the analytical data, the stoichiometry of the complexes has been found to be 1:2 (metal:ligand). On the basis of physicochemical data octahedral geometries were assigned for the complexes. The ligand and metal complexes were screened for their antimicrobial activity.
This study was conducted in Baghdad, Iraq from December 2021 to May 2022. The goal was to determine the effect of Toxoplasma gondii on liver function by examining the relationship between Toxoplasma infection and hormones. One hundred and twenty male patients with Chronic liver disease (CLD) (age:14-75 years) and 120 control males (age: 24-70 years) participated in this study. Serum samples were taken from all individuals and were then analysed for anti-Toxoplasma antibodies. Hormonal tests were conducted for all participants which included (Cortisol, testosterone, prolactin, insulin, and thyroid-stimulating hormone TSH). Biochemical tests included (Prothrombin time PT, international normalized ratio INR and albumin); liver enzymes
... Show MoreWe present a simple model of charge transfer current through sensitizer N3 molecule contact to TiO2 and ZnO semiconductors to calculate the charge transfer current. The model underlying depends on the fundamental parameters of the charge transfer reaction and it is based on the quantum transition theory approach. A transition energy, driving energy and potential barrier have been taken into account charge transfer current at N3 / TiO2 and N3 / ZnO devices with wide polarity solvents Acetic acid, 2-Methoxyethanol, 1-Butanol, Methyl alcohol, chloroform, N,N-Dimethylacetamide and Ethyl alcohol via the quantum donor-acceptor system.The effects of the transition energy and potential barrier are computed and discussion on charge transfer current.
... Show MoreDuring infection, T. gondii disseminates by the circulatory system and establishes chronic infection in several organs. Almost third of humans, immunosuppressed individuals such as HIV/AIDS patients, cancer patients, and organ transplant recipients are exposed to toxoplasmosis. Therefore, the study aimed to investigate the possibility that Toxoplasma infection could be a risk factor for COVID-19 patients and its possible correlation with C-reactive protein and ferritin. Overall 220 patients referred to the Al Furat General Hospital, Baghdad, Iraq were enrolled from 2020–2021. All serum samples were tested for T. gondii immunoglobulins (IgG and IgM) antibodies, C-reactive protein and ferritin levels. In patients with COVID-19, the results
... Show More(3) (PDF) Theoretical investigation of charge transfer at N3 sensitized molecule dye contact with TiO2 and ZnO semiconductor. Available from: https://www.researchgate.net/publication/362773606_Theoretical_investigation_of_charge_transfer_at_N3_sensitized_molecule_dye_contact_with_TiO2_and_ZnO_semiconductor [accessed May 01 2023].
Transparent nano- coating was prepared by Sol-Gel method from titanium dioxide TiO2 which has the ability to self-cleaning coating used for hospitals, laboratories, and places requiring permanent sterilization. Three primary colors are selected (red, blue, and yellow) as preliminary study to the effect of these colors on the nano-coating. Three traditional oil paints color were used as base, then coated by a layer of TiO2-Sol and deposited on the paints. The optical properties of TiO2-Sol were measured; the maximum absorption wavelength at (λmax=387 nm), the refractive index (n=1.4423) and the energy band gap (Eg=3.2 eV). The structure properties found by X-ray diffraction of TiO