This work is concerned with the vibration attenuation of a smart beam interacting with fluid using proportional-derivative PD control and adaptive approximation compensator AAC. The role of the AAC is to improve the PD performance by compensating for unmodelled dynamics using the concept of function approximation technique FAT. The key idea is to represent the unknown parameters using the weighting coefficient and basis function matrices/vectors. The weighting coefficient vector is updated using Lyapunov theory. This controller is applied to a flexible beam provided with surface bonded piezo-patches while the vibrating beam system is submerged in a fluid. Two main effects are considered: 1) axial stretching of the vibrating beam that leads to the appearance of cubic stiffness term in beam modelling, and 2) fluid effect. Fluid forces are decomposed into two components: hydrodynamic forces due to the beam oscillations and external (disturbance) hydrodynamic loads independent of beam oscillations. Simulation experiments are implemented using MATLAB/SIMULINK to verify the correctness of the proposed controller. Two piezo-patches are bonded on the beam while an impulse force with multi-pulse is applied to excite the beam vibration. The results show the strength of the proposed control structure.