The significant shortage of usable water resources necessitated the creation of safe and non-polluting ways to sterilize water and rehabilitate it for use. The aim of the present study was to examine the ability of using a gliding arc discharge to inactivate bacteria in water. Three types of Bacteria satisfactory were used to pollute water which are Escherichia coli (Gram-negative), Staphylococcus aurous (Gram-positive) and salmonella (Gram-negative). A DC power supply 12V at 100 Hz frequency was employed to produce plasma. pH of water is measured gradually during the plasma treatment process. Contaminated water treated by gliding arc discharge at steadying the gas flow rate (1.5 l/min) and changing the exposure time of the polluted water to the plasma during periods of 10, 20 and 30 min.The bacteria which used show different responses when expose to produced plasma, most of them inactivated when treated with plasma for 30minutes.That’s means Survival rate decreased with treatment time. Results show that gliding arc plasma is a powerful and green tool to treatment water without generating any byproducts.
The cytotoxic effect of catechol was examined in two human cancer cell lines, Epidermoid larynx carcinoma (Hep- 2), Cerebral glioblastoma multiforme (AMGM-5) and Murine mammary adenocarcinomacell (AMN3) treated with half concentrations of catechol (1000, 500, 250, 125, 62.5 and 32.25 μM) for 72 hr. The get hold of results showed catechol have a toxic effect of the cell viability of three types of cell lines after 72h of exposure, the toxicity was dependent on catechol concentrations and/or autoxidation for quinines formation, there were a marked decreased of cell viability in a dose dependent manner in all cell line types. Inhibition concentration of catechol for 50% of cell viability (IC50) were calculated, they were at 581.5 μM, 478 μM
... Show MoreRadiation therapy plays an important role in improving breast cancer cases, in order to obtain an appropriateestimate of radiation doses number given to the patient after tumor removal; some methods of nonparametric regression werecompared. The Kernel method was used by Nadaraya-Watson estimator to find the estimation regression function forsmoothing data based on the smoothing parameter h according to the Normal scale method (NSM), Least Squared CrossValidation method (LSCV) and Golden Rate Method (GRM). These methods were compared by simulation for samples ofthree sizes, the method (NSM) proved to be the best according to average of Mean Squares Error criterion and the method(LSCV) proved to be the best according to Average of Mean Absolu
... Show MoreThe aim of this research is to find out the satisfaction functional for faculty members
To Girls College of education at the University of Baghdad, and to find out the differences in this variable according to gender and qualification of education.
The sample was chosen from 60 teachers (males – females), they applied a questionnaire consisting of (30) paragraphs after the verifying of sincerity and persistence for paragraphs.
The main findings of the studies,
The results are indicated that the samples (faculty members) have a good level of satisfaction functional. In addition, results are shown; there are no significant differences of statistically between males and females for the faculty members. However, results are sho
The research aims to measure the sustainability of the Iraqi economy for the period 1990-2018 as well as to show the impact of fluctuations in the level of GDP on financial sustainability, where financial sustainability is the necessary and sufficient condition for achieving economic and financial balance in the country, as financial sustainability reflects the movement of the state budget and its relationship to GDP through the indicators of deficit, fiscal surplus and public debt internal and external, as well as reflecting the art of managing public debt, and the more managed public debt is achieved, the more the management of public debt is achieved financial sustainability. for the state in the sense that there is a reciprocal
... Show MoreThis research develops a new method based on spectral indices and random forest classifier to detect paddy rice areas and then assess their distributions regarding to urban areas. The classification will be conducted on Landsat OLI images and Landsat OLI/Sentinel 1 SAR data. Consequently, developing a new spectral index by analyzing the relative importance of Landsat bands will be calculated by the random forest. The new spectral index has improved depending on the most three important bands, then two additional indices including the normalized difference vegetation index (NDVI), and standardized difference built-up index (NDBI) have been used to extract paddy rice fields from the data. Several experiments being
... Show MoreIn this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show MoreThis research aims to removes dyes from waste water by adsorption using banana peels. The conduct experiment done by banana powder and banana gel to compare between them and find out which one is the most efficient in adsorption. Studying the effects different factors on adsorption material and calculate the best removal efficiency to get rid of the methylene blue dye (MB).
It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i
... Show More