The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific threat data recovered from the publicly available data sets CICIDS2017 and IoT-23. Classification of network anomalies and feature extraction are carried out with the help of deep learning models such as CNN and LSTM. This paper’s proposed system complies with IEEE standards like IEEE 802.15.4 for secure IoT transmission and IEEE P2413 for architecture. A testbed is developed in order to use the model and assess its effectiveness in terms of overall accuracy, detection ratio, and time to detect an event. The findings of the study prove that threat intelligence systems built with deep learning provide explicit security to IoT networks when they are designed as per the IEEE guidelines. The proposed model retains a high detection rate, is scalable, and is useful in protecting against new forms of attacks. This research develops an approach to provide standard-compliant cybersecurity solutions to enable trust and reliability in the IoT applications across the industrial sectors. More future research can be devoted to the implementation of this system within the context of the newest advancements in technologies, such as edge computing.
The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.
The photostabilization? of poly vinyl chloride (PVC) ? films has been investigated by using diamine derivatives. The? (PVC) films were? contained 0.5% weight? of diamine derivatives which prepared by the method of casting. The photostabilizations? ?of these compounds were determined by monitoring the carbonyl index value with irradiation time. Also, the effect ?of concentrations of additives (range 0.1-0.5wt) on the rate of photostabilization? process was studied. Therefore we found? that a increased photostabilization rates was increase with increasing? concentrations of compound. Besides, the influence? on film thickness? of photostabilization process was also studied; ?and the results? showed that? the increasing of film thickness incr
... Show MoreIn this article, we will present a quasi-contraction mapping approach for D iteration, and we will prove that this iteration with modified SP iteration has the same convergence rate. At the other hand, we prove that the D iteration approach for quasi-contraction maps is faster than certain current leading iteration methods such as, Mann and Ishikawa. We are giving a numerical example, too.
Abstract
An optoelectronic system for fog detection and visibility technique is presented .The idea of this research is based on the measurement of the atmospheric visibility by using an infrared beam emitter from LED diode. The optical scattering is used as a method to calculate the visibility. This method is applied at forward scattering within a foggy atmosphere, which is modern and has great importance for measuring visibility in seaports, airports, public roads and highways. In this paper we focus on the description of the system, principles of its operation and some results of field tests.
Keywords: fog sensor, visibility sensor, backscattering, forward scattering.
Moment invariants have wide applications in image recognition since they were proposed.
Ground state energies and other properties of 2S shell for some atoms as Be(Z=4), B(Z=5), C(Z=6) and N(Z=7) were calculated by using Hartree-Fock wave function. We found the values of potential energies in hartree unit (3.8369, 6.78565, 10.18852 and 14.41089) respectively and the other proprieties like expectation values of the position < r1m > were in agreement with the published results. All the studied atomic properties were normalized.
In this article, performing and deriving te probability density function for Rayleigh distribution is done by using ordinary least squares estimator method and Rank set estimator method. Then creating interval for scale parameter of Rayleigh distribution. Anew method using is used for fuzzy scale parameter. After that creating the survival and hazard functions for two ranking functions are conducted to show which one is beast.
In this paper, an enhanced artificial potential field (EAPF) planner is introduced. This planner is proposed to rapidly find online solutions for the mobile robot path planning problems, when the underlying environment contains obstacles with unknown locations and sizes. The classical artificial potential field represents both the repulsive force due to the detected obstacle and the attractive force due to the target. These forces can be considered as the primary directional indicator for the mobile robot. However, the classical artificial potential field has many drawbacks. So, we suggest two secondary forces which are called the midpoint
... Show More