The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific threat data recovered from the publicly available data sets CICIDS2017 and IoT-23. Classification of network anomalies and feature extraction are carried out with the help of deep learning models such as CNN and LSTM. This paper’s proposed system complies with IEEE standards like IEEE 802.15.4 for secure IoT transmission and IEEE P2413 for architecture. A testbed is developed in order to use the model and assess its effectiveness in terms of overall accuracy, detection ratio, and time to detect an event. The findings of the study prove that threat intelligence systems built with deep learning provide explicit security to IoT networks when they are designed as per the IEEE guidelines. The proposed model retains a high detection rate, is scalable, and is useful in protecting against new forms of attacks. This research develops an approach to provide standard-compliant cybersecurity solutions to enable trust and reliability in the IoT applications across the industrial sectors. More future research can be devoted to the implementation of this system within the context of the newest advancements in technologies, such as edge computing.
In this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.
The objective of study is to investigate the effect of using of Whey – Extracted Soyamilk indifferent Proportions instead of Cow s milk on Standing Height of Muffin of 5.5 cm. was reached in the treatment C ( 50% Whey – Extracted Soyamilk ) as compared with a Control treatment A (0% Whey – Extracted Soyamilk) at which the Muffin height reached 4.8 cm. About the sensory evaluation , The results showed for the Flavour property , to a significant difference was found between the treatment A (0% whey – Extracted Soyamilk ) which got 6.2 degree as compared with the two treatments namely , D(75% Whey – Extracted Soyamilk) and E(100% Whey – Extracted Soyamilk) Which got 5.7 and 5.3 degree , respectively. For Ge
... Show MoreThe aim of this investigation is to determine how different weight percentages of alumina nanoparticles, including 0.02, 0.04, and 0.06 percent wt, affect the physical characteristics of Poly Acrylamide (PAAM). Using a hot plate magnetic stirrer, 10 g of poly acrylamide powder was dissolved in 90 g of di-ionized distillate water for 4 hours to produce PAAM with a concentration of 0.11 g/ml. Four sections of the resulting solution, each with a volume of 20 ml, were created. Each solution was added independently with alumina nanoparticles in different ratios 0.0, 0.02, 0.04, and 0.06 to create four nano fluid solutions with different alumina nanoparticle contents based on each weight percent. The hand casting process for n
... Show More
The summery of my research marked by the judges judgment with his knowledge, I dealt with the definition of the judiciary, linguistically and idiomatically, and the importance and ligitimcy of the judiciary, as the judiciary is one of the most importunt pillars of lslam,inwhich justice as it proves the truth to its owners.
This paper deals with a new Henstock-Kurzweil integral in Banach Space with Bilinear triple n-tuple and integrator function Ψ which depends on multiple points in partition. Finally, exhibit standard results of Generalized Henstock - Kurzweil integral in the theory of integration.
The unresolved COVID‐19 pandemic considerably impacts the health services in Iraq and worldwide. Consecutive waves of mutated virus increased virus spread and further constrained health systems. Although molecular identification of the virus by polymerase chain reaction is the only recommended method in diagnosing COVID‐19 infection, radiological, biochemical, and hematological studies are substantially important in risk stratification, patient follow‐up, and outcome prediction.
This narrative review summarized the hematological changes including the blood indices, coagulative indicator
Abstract
In this study, we compare between the autoregressive approximations (Yule-Walker equations, Least Squares , Least Squares ( forward- backword ) and Burg’s (Geometric and Harmonic ) methods, to determine the optimal approximation to the time series generated from the first - order moving Average non-invertible process, and fractionally - integrated noise process, with several values for d (d=0.15,0.25,0.35,0.45) for different sample sizes (small,median,large)for two processes . We depend on figure of merit function which proposed by author Shibata in 1980, to determine the theoretical optimal order according to min
... Show Moreمفهوم معامل الارتباط كمقياس يربط بين متغيرين هذا يجلب انتباهنا إلى موضوع الإحصاء في كل المستويات. أكثر من ذلك هناك ثلاث نقاط خاصة هي اعتيادياً نشدد عليها كما يأتي:-
(1 معامل الارتباط هو الدليل المعياري والذي قيمته لا تعتمد على قياسات
المتغيرات الأصلية.
(2قيمته تقع في المدى] 1,1-[ .
&nb
... Show Morethe most important purposes and uses of the test results in the educational sector. This is because the quality of tests is related to their ability to predict the learner's behavior in the future, and the accuracy of the educational and administrative decisions that are taken in light of their results. The study aimed accordingly to reveal the predictive ability of the university Grade Point Average (GPA) in the Score of the specialized test for the position of teacher in the Ministry of Education in the Sultanate of Oman. It further aimed to investigate the differences in the predictive ability according to the specialization and academic year using the descriptive approach. The sample of the study consisted of (349) s/he students enro
... Show More