The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific threat data recovered from the publicly available data sets CICIDS2017 and IoT-23. Classification of network anomalies and feature extraction are carried out with the help of deep learning models such as CNN and LSTM. This paper’s proposed system complies with IEEE standards like IEEE 802.15.4 for secure IoT transmission and IEEE P2413 for architecture. A testbed is developed in order to use the model and assess its effectiveness in terms of overall accuracy, detection ratio, and time to detect an event. The findings of the study prove that threat intelligence systems built with deep learning provide explicit security to IoT networks when they are designed as per the IEEE guidelines. The proposed model retains a high detection rate, is scalable, and is useful in protecting against new forms of attacks. This research develops an approach to provide standard-compliant cybersecurity solutions to enable trust and reliability in the IoT applications across the industrial sectors. More future research can be devoted to the implementation of this system within the context of the newest advancements in technologies, such as edge computing.
Although its wide utilization in microbial cultures, the one factor-at-a-time method, failed to find the true optimum, this is due to the interaction between optimized parameters which is not taken into account. Therefore, in order to find the true optimum conditions, it is necessary to repeat the one factor-at-a-time method in many sequential experimental runs, which is extremely time-consuming and expensive for many variables. This work is an attempt to enhance bioactive yellow pigment production by Streptomyces thinghirensis based on a statistical design. The yellow pigment demonstrated inhibitory effects against Escherichia coli and Staphylococcus aureus and was characterized by UV-vis spectroscopy which showed lambda maximum of
... Show MoreNuclear structure of 20,22Ne isotopes has been studied via the shell model with Skyrme-Hartree-Fock calculations. In particular, the transitions to the low-lying positive and negative parity excited states have been investigated within three shell model spaces; sd for positive parity states, spsdpf large-basis (no-core), and zbme model spaces for negative parity states. Excitation energies, reduced transition probabilities, and elastic and inelastic form factors were estimated and compared to the available experimental data. Skyrme interaction was used to generate a one-body potential in the Hartree-Fock calculations for each selected excited states, which is then used to calculate the single-particle matrix elements. Skyrme interac
... Show MoreHealthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show MoreDetecting the optimum layer for well placement, which requires a diverse assortment of tools and techniques, represents a significant challenge in petroleum studies due to its critical impact on minimizing drilling costs and time. This study aims to evaluate integrated geological, petrophysical, seismic, and geomechanical data to identify the optimum zones for well placement. Three different reservoirs were analyzed to account for lateral and vertical variations in reservoir properties. The integrated data from these reservoirs provides many tools for reservoir development, especially to detect appropriate well placement zones based on evaluations of reservoir and geomechanical quality. The Mechanical Earth Model (MEM) was construct
... Show MoreThe purpose of this paper is applying the robustness in Linear programming(LP) to get rid of uncertainty problem in constraint parameters, and find the robust optimal solution, to maximize the profits of the general productive company of vegetable oils for the year 2019, through the modify on a mathematical model of linear programming when some parameters of the model have uncertain values, and being processed it using robust counterpart of linear programming to get robust results from the random changes that happen in uncertain values of the problem, assuming these values belong to the uncertainty set and selecting the values that cause the worst results and to depend buil
... Show MoreThe aim of this study was to making an analytical study in some kinematics variables in (200) meter breaststroke swimming to first ranking in championship 2003 – Spanish. The swimming in our country still suffering from several obstruction with retarded it’s development for the better since the investigators observe the insufficiency of swimming in our country to any analytical study for the international champions, this led to no specific and scientific discovering to these advanced levels as the estimation of the value of performance from the Iraqi coaches dependent on personality observation dependent on their opinion without referring to the specific and scientific diction. The investigators dependent on several kinematics variables
... Show MoreThis paper presents the non-linear finite element method to study the behavior of four reinforced rectangular concrete MD beams with web circular openings tested under two-point load. The numerical finite elements methods have been used in a much more practical way to achieve approximate solutions for more complex problems. The ABAQUS /CAE is chosen to explore the behavior of MD beams. This paper also studies, the effect of both size and shape of the circular apertures of MD beams. The strengthening technique that used in this paper is externally strengthening using CFRP around the opening in the MD beams. The numerical results were compared to the experimental results in terms of ultimate load failure and displace
... Show More
