This work aims to develop a secure lightweight cipher algorithm for constrained devices. A secure communication among constrained devices is a critical issue during the data transmission from the client to the server devices. Lightweight cipher algorithms are defined as a secure solution for constrained devices that require low computational functions and small memory. In contrast, most lightweight algorithms suffer from the trade-off between complexity and speed in order to produce robust cipher algorithm. The PRESENT cipher has been successfully experimented on as a lightweight cryptography algorithm, which transcends other ciphers in terms of its computational processing that required low complexity operations. The mathematical model of the present algorithm is simple, and the running operations required small execution time for encryption-decryption sensing data. Hence, a developed algorithm called DPRESENT was introduced to improve the complexity of the cipher text based on the PRESENT algorithm and DNA cryptography technique for developing a lightweight cipher algorithm. The NIST suite showed that the proposed algorithm tests presented high level of randomness and complexity. The execution time for the proposed algorithm was kept minimal as the current cipher algorithm. The developed algorithm is a new trend that can be applied for different lightweight cryptosystems to achieve the trade-off among complexity and speed as a robust cipher algorithm.