The goal of this research is to develop a numerical model that can be used to simulate the sedimentation process under two scenarios: first, the flocculation unit is on duty, and second, the flocculation unit is out of commission. The general equation of flow and sediment transport were solved using the finite difference method, then coded using Matlab software. The result of this study was: the difference in removal efficiency between the coded model and operational model for each particle size dataset was very close, with a difference value of +3.01%, indicating that the model can be used to predict the removal efficiency of a rectangular sedimentation basin. The study also revealed that the critical particle size was 0.01 mm, which means that most particles with diameters larger than 0.01 mm settled due to physical force, while most particles with diameters smaller than 0.01 mm settled due to flocculation process. At 10 m from the inlet zone, the removal efficiency was more than 60% of the total removal rate, indicating that increasing basin length is not a cost-effective way to improve removal efficiency. The influence of the flocculation process appears at particle sizes smaller than 0.01 mm, which is a small percentage (10%) of sieve analysis test. When the percentage reaches 20%, the difference in accumulative removal efficiency rises from +3.57% to 11.1% at the AL-Muthana sedimentation unit.