Preferred Language
Articles
/
-0KwypsBMeyNPGM3TOBo
Effect of Sulfur and Nitrogen co-Doped Graphene Quantum Dots on Co3O4 Nanoparticles as Solar Induced Photocatalyst
...Show More Authors

The photocatalyst process is considered the most promising method for the removal of water contamination. For excellent chemical and structural properties of Co3O4 nanoparticles, various Co3O4-based nanostructures can be applied as a photocatalyst. In this work, carbon quantum dots is prepared via an eco-friendly process and linked to Co3O4 effectively. X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible absorption spectroscopy and Fourier transform infrared spectroscopy (FT-IR). The photocatalyst process reveals that prepared nanocomposites can be degraded methylene blue under solar irradiation strongly. Results showed that methylene blue and methyl orange are degraded via 64% and 56% efficiency after 70 minutes of irradiation under visible irradiation using Co3O4 nanoparticles respectively. The photocatalytic performance of Co3O4 nanoparticles was improved via linking SN-GQDs and formation SN-GQDs/ Co3O4 nanocomposites. UV-Vis analysis revealed that charge transfer from Co3O4 to SN-GQDs and prevent charge recombination in Co3O4 which leads to better photocatalytic efficiency. This study introduces SN-GQDs/ Co3O4 nanocomposites as a novel and green photocatalyst agent.

Publication Date
Tue Dec 02 2014
Journal Name
International Journal Of Innovative Science, Engineering & Technology
Structural and Optical Properties of Synthesized Manganese doped ZnS Quantum Dots
...Show More Authors

ZnS:MnP2+P nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS:MnP 2+P quantum dots were zinc acetate as zinc source, thioacetamide as a sulfur source, manganese chloride as manganese source (R & M Chemical) and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS:MnP 2+P with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM) also by field effect scanning electron microscopy (FESEM). The composition of the samples is analysed by EDS. UV-Visible absorption spectroscopy analysis

... Show More
Publication Date
Mon Jul 01 2024
Journal Name
Iop Conference Series: Earth And Environmental Science
Effect of Nitrogen and Sulfur Fertilizers on Growth and Yield of Canola
...Show More Authors
Abstract<p>For the purpose of determining the impact of three levels of nitrogen fertilizer (0, 60, and 120 kg.ha<sup>-1</sup>) and sulfur fertilizer (0, 40, and 60 kg.ha<sup>-1</sup>) on production and growth indicators (number of leaves, number of branches, chlorophyll pigments, and fresh and dry weights), a field experiment was carried out during the winter season (2021/2022) in the fields of Al-Diwaniyah Province, Ministry of Agriculture, Diwaniyah Agriculture Directorate, Al-Nouriyah Forest Division. Means were compared using the least significant difference test (LSD) at a 0.05 level of probability. In a factorial experiment employing a wholly randomized block design wi</p> ... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Sep 20 2021
Journal Name
Key Engineering Materials
The Effect of Quantum Confinement on Optical Properties of CdSe Quantum Dots at Room Temperature
...Show More Authors

CdSe quantum dots possess a tuning energy gap which can control gap values according to the size of the quantum dots, this is made the material able to absorb the wavelengths within visible light. A simple model is provided for the absorption coefficient, optical properties, and optical constants for CdSe quantum dots from the size 10nm to 1nm with the range of visible region between (300-730) nm at room temperature. It turns out that there is an absorption threshold for each wavelength, CdSe quantum dots begin to absorb the visible spectrum of 1.4 nm at room temperature for a wavelength of 300 nm. It has been noted that; when the wavelength is increased, the absorption threshold also increases. This applies to the optical propertie

... Show More
View Publication
Crossref
Publication Date
Sun Dec 01 2024
Journal Name
Iraqi Journal Of Physics
Study of the Sensitivity of Carbon Quantum Dots for NO2 Gas Sensor and improve it using Graphene
...Show More Authors

Gas sensors are essential for detecting noxious gases that have a detrimental effect on people's health and welfare. Carbon quantum dots (CQDs) are the fundamental component of gas detectors. CQDs and graphene (Gr) were prepared using the electrochemical method. The gas sensitivity of these materials was evaluated at different temperatures (150, 200, 250 °C) to assess their effectiveness. Subsequently, experiments were conducted at different temperatures to ascertain that the combination of CQDs and Gr, with various percentages of Gr and CQDs, exhibited superior gas sensitization properties compared to CQDs alone. This was evaluated based on criteria such as sensitivity, recovery time, and reaction time. Interestingly, the combination was

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Effects of Nitrogen and Sulfur Sprays on the Growth and Production of Broccoli Brassica Oleracea var. Italica L.: nitrogen and sulfur spray enhance broccoli growth and production
...Show More Authors

In order to achieve optimal plant growth and production, essential nutrients must be readily available in adequate quantities and in a balanced proportion to give a good yield, especially broccoli which has health benefits that may not be found in many other plants. For this purpose, this experiment was carried out during the seasons 2019/2020 in the botanical garden of the Department of Biology, College of Science for Women, University of Baghdad, to study the effects of nitrogen and sulphur and their interaction on eight parameters reflecting the overall traits of vegetative growth, yield, and chlorophyll content of broccoli Brassica oleracea L. (var. italic JASSMINE F1 Hybrid). A factorial design with three replicates was use

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Journal Of Renewable Materials
Boosting Structural and Dielectric Properties of Polyvinyl Alcohol/Starch/Carboxymethyl Cellulose Films with Iron-Doped Carbon Quantum Dots for Advanced Applications
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Mon Jun 04 2018
Journal Name
Baghdad Science Journal
Fabricated of Cu Doped ZnO Nanoparticles for Solar Cell Application
...Show More Authors

Copper with different concentrations doped with zinc oxide nanoparticles were prepared from a mixture of zinc acetate and copper acetate with sodium hydroxide in aqueous solution. The structure of the prepared samples was done by X-ray diffraction, atomic force microscopy (AFM) and UV-VIS absorption spectrophotometer. Debye-Scherer formula was used to calculate the size of the prepared samples. The band gap of the nanoparticle ZnO was determined by using UV-VIS optical spectroscopy.

View Publication Preview PDF
Scopus (16)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Sep 26 2024
Journal Name
Journal Of Optics
Cysteine-cupped CdSe/CdS quantum dots as an opticalbiosensor for early skin cancer detection
...Show More Authors

This study represents an optical biosensor for early skin cancer detection using cysteine-cupped CdSe/CdS Quantum Dots (QDs). The study optimizes QD synthesis, surface, optical functionalization, and bioconjugation to enhance specificity and sensitivity for early skin cancer cell detection. The research provides insights into QD interactions with skin cancer biomarkers, demonstrating high-contrast, precise cellular imaging. Cysteine-capped CdSe/CdS absorption spectra reveal characteristic peaks for undamaged DNA, while spectral shifts indicate structural changes in skin-cancer-damaged DNA. Additionally, fluorescence spectra show sharp peaks for undamaged DNA and notable shifts and intensity variations when interacting with skin cancer. This

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
The influence of temperature and size on the absorption coefficient of CdSe quantum dots
...Show More Authors
Abstract<p>Because of Cadmium selenide quantum dots (CdSe quantum dots) has a tuning energy gap in the visible light range, therefore; it is provided a simple theoretical model for the absorption coefficient of CdSe quantum dots, where the absorption coefficient determines the extent to which the light of a material can penetrate a specific wavelength before it is absorbed. CdSe quantum dots have an energy gap can be controlled through two effects: the temperature and the dot size of them. It is found that; there is an absorption threshold for each directed wavelength, where CdSe quantum dots begin to absorb the visible spectrum at a size of 1.4 nm at room temperature for a directed wavelength 3</p> ... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Nov 30 2014
Journal Name
International Journal Of Advanced Research In Science, Engineering And Technology
Structural Characteristics and photoconductivity of Cerium doped Zinc Sulfide Nanoparticles synthesized via coprecipitation method
...Show More Authors

ZnS:Ce3+ nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS:Ce3+ quantum dots were zinc acetate (R & M Chemical) as zinc source, thioacetamide as a sulfur source, cerium chloride as cerium source and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS:Ce3+ with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM) also by field effect scanning electron microscopy (FESEM) and XRD. Upon exposure to 460 nm light at zero bias voltage, ZnS:Ce3+/p-Si showed a high sensitivity of 4000% an

... Show More